
In these strange times, held in the grip of the coriander virus, once
you’ve tidied your sock drawer for the third time and seen all your
favourite movies twice, we do still have some time to reflect on how
we got to where we are. The development of the ORC VPP might
not be everyone’s first port of call for rumination, but it is an inter-
esting case study of how the field of Artificial Intelligence (AI) has
infiltrated our lives. 

When you look at it with the benefit of hindsight we can recognise
now that at its outset the IMS VPP-based handicap was a hubristic
step into the unknown. The belief that you could reliably predict the
performance of a fleet of random boats using a very simple para-
metric description of their hull and their sailplan was bold indeed.
The aim was surely altruistic: to escape the type forming of the
rating rules in place back then and establish a new rule where you
could race any type of boat on a level playing field.

For the ORC today the goal is still the same: we try to produce
handicap polars that reflect the performance of any boat based on
the measured dimensions of the hull and the sailplan. To do this
we need to create force models based on the dimensions and
 calculated quantities of weight, sail area, keel area and so on.
Some of these are easy: having bigger sails, a taller rig and more
stability all make a boat sail faster. But the nuances of hull resis-
tance and sail forces are much more tricky.

When IMS started in the mid-1980s a lot of engineering calcu-
lations were still done using a slide rule, and the early desktop com-
puters like the Commodore PET. Computing power of course is now
many orders of magnitude greater than back then… ask a modern
engineer about log tables and he will direct you to the nearest IKEA.

The VPP started off using tank test results taken from 20 or so
models and a crude representation of rig performance. It was a very
capable VPP, sensitive to changes in displacement, length, sail
area, rig height and draft. To design a boat, it was a perfect tool.
Remember how those first-generation IMS boats were much faster
and easier to sail than their IOR cousins of the same size? 

However, if you wanted to handicap a racing boat designed to
exploit this early VPP, it was less than robust. Over time it became

way too easy to design a boat that had a lot of slow features but
sailed faster than the VPP thought it should. These rule beaters,
along with complex scoring, gave IMS a bad reputation outside
some small well-funded groups in the Med who were thriving on
new rule exploitations. The International Measurement System had
morphed into the Italian Measurement System (although truth be
told there were plenty of Spanish teams doing the same). 

At ORC we have been working to widen the appeal of our product
for grand prix racers and club sailors alike, and slowly the system
has improved and the fleets are growing. One of the tools being
used to enable this improvement is AI.

With ready access to better and faster computers, for hydro
 modelling we have gone from having only 20 hull types to cover all
the boat types in the world, to being able to run 1,000 hulls in
 Computational Fluid Dynamics (CFD) computer codes. On the aero
side we have gone from having a handful of wind tunnel tests to
being able to run several thousand ‘virtual wind tunnel’ simulations.
And to analyse all this data we have moved to an M & S (Modelling
& Simulation not Marks & Spencer) approach. And to make sense
of all this data we have had to adopt AI.

What this means is that we have a huge data set of cause and
effect from which to derive some sensible conclusions. For example,
we now have 3,000 wind tunnel tests with different wind angles, sail
trims and traveller positions. Some of these are ‘good’ tests, and
a lot of them are ‘bad’ tests in terms of making the boat sail fast.
But that doesn’t matter, because in the AI process the machine needs
to learn what is fast and what is slow, and it can’t do that just by
having all the runs being close to perfection. In fact, what we are
trying to do is to take all sorts of sail trims and identify what’s fast. 

To do this we take our 3,000 CFD results, each one characterised
by a set of variables, say, 10 things: main camber, jib camber, boom
position, jib lead position fore and aft, and position in and out, jib
twist, main twist, mast height, overlap and fractionality. This is our
‘training set’, and the computer then ‘learns’ from all the interactions
between these trimming and shape parameters so that the perfor-
mance of the sailplan, trimmed in the best way, can be calculated

SEAHORSE 33

Old dog new tricks
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There’s no better illustration of the nuanced benefits of a change
in the transom immersion and aft run than the use in some of 
the 2008-generation Imoca designs of adjustable aft flow control.
This is the 2008 Farr design Virbac of Jean-Pierre Dick which 
featured a two-segment split transom flap system which could 
be raised or lowered from the cockpit. This allowed a little more
rocker than would otherwise be desirable for high-speed sailing
so better light and medium-air performance with the flaps raised
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based on its definition in terms of these chosen parameters. 
Choosing the parameters is the key element to this AI process.

In understanding the aero factors the training set parameters need
to be influential on sail performance. To illustrate with an analogy,
imagine that we are using this approach to make a perfect-tasting
pancake: we can see how the ratio of eggs to flour to water and
the pan temperature and cooking time are likely to affect the taste,
and if we made 1,000 random pancakes we should identify the
best pancake recipe. If, however, we decided that the important
parameters were the colour of the mixing bowl, or whether or not
we use an electric mixer we wouldn’t learn much. And so it is with
‘parametric’ force models: if you don’t characterise your training
set with sensible parameters no amount of AI can rescue you. 

Using this approach we now have an improved aero model, and
that helps not only because we can predict effects like heeling force
and thrust more accurately, but also how this affects other forces.
For example, one of the vexing questions we have had since adoption
of this method has been why does the VPP tend to overestimate
the benefit of stability? There’s no question that having more righting
moment helps performance, why else would people hike? Yet depow-
ering is also beneficial: as the wind strengthens to keep a boat on
its feet you have to depower the sails, reduce the heeling force,
and get the centre of effort lower. 

Aerodynamic theory and wind tunnel tests both show that as you
depower with increased windspeed the overall sailplan efficiency
is reduced because the effective span is reduced. Therefore a stiff
boat enters this zone of reduced efficiency less quickly as the wind
rises. Turns out that we have been over-estimating this loss of
 efficiency a little bit: our AI analysis of the virtual wind tunnel data
showed that there are sail trimming strategies that can mitigate
the loss of efficiency that our limited wind tunnel test database
couldn’t identify. When that was introduced into the VPP the bias
towards favouring stability was reduced. 

Now we have moved our force model a step closer to reality and
the predictions all work better. Talking of reality, it is entirely possible
that the top sail trimmers have reached the same conclusion as
the AI thanks to their years of trimming experience and feedback
from skilled helmsmen – it’s come full circle. This just goes to show
that a degree in engineering is not required when trimming sails.

On the hydrodynamic side we are engaged in a magnum opus,
a world that is not as comfortable as easily defined sail shapes
and an airflow that is undisturbed by the water. Now to be accurate
the VPP must also deal with hull drag which is in two parts: the hull

friction, which for now is under control because there is a wealth
of published data about which coefficients to use and, knowing the
wetted surface area and the boat speed, it’s an easy calculation.

The other component, however, is wave-making (or residuary resis-
tance, so called because it’s the bit left over after you have taken
away the friction resistance) – and this is more problematic. It depends
not only on how heavy the boat is but also how long and wide it is,
how the hull volume is distributed towards the ends of the boat, and
crucially how much transom area is immersed in the hull wave
 system… this is a distinct feature on most modern fast designs.

There is no doubt that moving from 20 tank tests analysed with
a slide rule to 1,000 tests processed with a modern computer’s
neural network has made a big improvement. And this means it’s
no longer as easy for the yacht designer to look at the rule and
decide which parameters he can exploit for a favourable handicap. 

But as hull shapes have moved towards shorter aft overhangs
this ‘transom drag’ is a factor that must be tackled. What’s needed
is a characteristic ‘wave-making length’ that is sensitive to where
the aft end of the boat is and a method to capture the drag of the
recirculating flow behind the transom.

In the course of 300 CFD runs, undertaken by Jason Ker and his
associate Marcus Mauleverer, the position of the running waterline
along the hull was captured and analysed to build an algorithm that
can predict this running waterline position around any hull. This in
turn means that the position of the waterline at the transom can
be determined. Also the wave pattern aft of the transom can be
calculated and used to define an aft end of the effective waterline. 

Knowing the wave pattern and the immersed depth of the
 transom, another algorithm was devised to predict how the water
behind the transom behaves. For a boat with an immersed transom
at low speeds the water recirculates behind the transom, but as
speed increases the wetted transom area reduces and finally at
top speeds the transom runs clean. Given this effect it’s crucial
to calculate the extent of transom wetting and the associated
 pressures on the transom – because when it is wet the water is
‘leaning’ on it and thus pushing the boat forwards.

Said quickly this all sounds do-able, but spare a thought for the
poor engineer who sits bleeding from the ears to try to make this
work. We’re fortunate to have such dedicated experts on our ORC
team, and this pause in racing for a few months may very well help
us get more out of them this year on VPP progress than in otherwise
frantic times.
Andy Claughton, International Technical Committee       q
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Above: the transom flap alternative favoured by designers Owen-Clarke was the Interceptor – employed on their Imoca designs for
Mike Golding’s Ecover (here) and Dee Caffari’s Aviva. The Interceptor is a vertical carbon blade running the full width at the bottom of
the transom that is raised or lowered into a narrow slot. Designed originally for Russian high-speed naval vessels, when it is lowered it
locks in a wedge of water acting as a virtual trim tab. This is Ecover sailing at speed with the blade raised (top) showing displacement
sailing flow off the stern and with the blade lowered and stern lifted (above left) with a clean wake more like a planing dinghy. Golding
found an upper speed limit cut-off at around 17kt, at which point he needed to lift the bow again to go any faster – and maintain control.
Right: examples of the numeric calculation and CFD modelling employed in the course of the ORC’s new research into transom effects
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